图1 人工智能创新链产业链融合发展图谱
《报告》对人工智能高价值专利如何为创新链产业链融合发展保障护航进行了定量和定性分析。从行业公认的能够直观体现高价值专利的几个因素来看,自2011年、2012年开始,人工智能领域的中国专利奖占比逐年提高、专利许可转让数量呈上升趋势、专利诉讼遍及多个应用场景,展现了高价值专利对技术产业应用相辅相成的走势。
十大基础技术领域的专利数量稳步增长,极大激发AI创新链活力。深度学习、智能云、计算机视觉、智能语音、自然语言处理、大数据、知识图谱、智能推荐、智能芯片、量子计算等智能技术构成了人工智能创新链技术底座,也是产业链应用的基础技术。在技术与政策双红利的推动下,2016-2021年深度学习专利申请年均复合增长率达到53%,对人工智能的引领作用开始逐步凸显;相比之下,智能语音、自然语言处理、大数据、知识图谱和智能推荐领域的专利申请呈现稳步增长的态势,其中2021年自然语言处理的专利申请量仅次于深度学习、智能云和计算机视觉,发展势头强劲;智能芯片和量子计算由于起步相对较晚,相关专利储备较少,仍处于技术加速积累的阶段。国内创新主体也纷纷展开专利布局,不断增强市场竞争实力。例如百度公司在深度学习、智能云和智能驾驶等多个领域继续保持领先优势,寒武纪、浪潮和华为在智能芯片领域展现了充分的专注度和科研实力,清华大学、浙江大学等高校也在计算机视觉和自然语言处理等领域投入更多研发资源,成为基础攻关的重要力量。
图2 AI创新链十大基础技术专利申请趋势和分布构成
AI创新主体展现积极创新面貌,中小企业为产业发展增添新力量。从创新主体的申请量排名上看,百度、腾讯、国家电网、华为位列前四,专利申请数量均突破10000件,是我国AI领域技术创新的主力军。从专利授权量上看,仍然是上述四家企业位居前列,且百度公司专利申请量和授权专利持有量均排名第一。此外,腾讯专利2017-2020年腾讯专利申请年均复合增长率高达70%,在AI领域前四创新主体中申请量增速排名第一。从授权专利占比上看,申请量排名第七的清华大学和第九的浙江大学,均以45%的授权专利占比排名前两位。作为技术创新的重要源泉和吸纳劳动力就业的重要载体,大量中小企业也积极涌入人工智能赛道,在创新链一侧,我国人工智能领域企业主体共申请专利超过110万件,中小企业专利贡献超过90%。从产业链看,AI技术在中小企业中的普及率超过40%,语音识别、智能制造等技术在中小企业应用广泛,助力中小企业升级改造和智能化应用。
图3 创新链前十创新主体专利申请量和授权量
AI核心技术领域高价值专利集聚明显,产学研合作稳步推进。当前,智能云和深度学习是高价值专利数量最多的两个领域,百度得益于更早地投入与布局,展现专利申请数量与质量同步提升的发展态势。其他创新主体也结合自身业务发展方向,在不同的基础技术领域进行了有针对性的布局,如国家电网在深度学习和大数据领域,浪潮集团在智能云,阿里巴巴在智能推荐,平安科技在自然语言处理和计算机视觉都保持着创新优势。高等院校在人工智能领域技术创新活跃,涌现了大量专利成果,并通过与企业成立联合实验室和技术研发中心等方式,加快产学研用协同创新进程。截至2022年9月,我国人工智能领域产学研联合申请专利数量超2万余件,其中发明专利占比约90%,整体呈上升趋势增长,产业应用较为广泛。
图4 中国AI创新主体高价值专利技术布局
图5 AI领域产学研联合申请专利发展趋势图
AI专利助力新兴应用场景落地,推动产业链转型升级。目前,人工智能创新链的产业化应用主要集中在智慧城市、智慧交通、智慧医疗、智慧金融、智慧工业和智慧教育等领域。从技术应用的成熟度来看,不同AI技术在不同场景的应用呈现出阶梯式发展的态势。智慧工业是当前各创新主体主要布局的技术应用场景,AI专利申请量达到65万余件,其次就是智慧金融,专利申请量为30万余件。其中也涌现出“海淀城市大脑”“灵医智惠AI医疗品牌”“智慧交通解决方案TrafficGo2.0”“普惠金融人工智能开放平台”等众多优秀实践案例,推动高端智能技术与行业的融合发展。
“智慧+”场景应用创造出更多产业增长点,新兴人工智能技术生成数字经济发展新动能。AI在城市、交通、医疗、教育及工业等场景的融合应用加速,不断催生新业态新模式新产业。以智慧工业为例,将工业互联网、人工智能等在内的智能制造新技术与工具,集成到工业生产流程中,正在引领我国工业数字化新生态。报告显示,截至2022年9月,我国智慧工业领域申请专利共计65万余件。百度公司以近9000件专利总数位居第一,国家电网位居第二,其余创新主体专利申请量差距不大,发展潜力较强,各创新主体在智慧工业领域的专利布局积极竞争,难以拉开较大差距。与此同时,基于人工智能的深度学习、内容生成,语音、视觉识别技术越来越成熟,以元宇宙和数字人技术为代表的新兴技术,也迎来了专利的快速积累阶段,百度、腾讯、华为等企业积极开展前沿专利布局,探索人机交互发展和应用,助力数字经济高质量发展。
图6 中国元宇宙专利主要申请人排名
图7 中国数字人专利技术申请-公开趋势
《报告》结合当前人工智能知识产权生态建设和全产业链专利布局情况,对产业高质量可持续发展提出总结与展望。人工智能是新一轮科技革命和产业变革的重要驱动力量,发展人工智能是支撑科技自立自强、实现高质量发展的重要战略。党的二十大报告提出,推动战略性新兴产业融合集群发展,构建新一代信息技术、人工智能、生物技术、新能源、新材料、高端装备、绿色环保等一批新的增长引擎。当前,人工智能技术与5G、云计算、大数据的融合发展已将成为推动数字经济发展的动能源泉,今后将进一步与其他数字技术相互碰撞出全新的科技驱动力。随着人工智能创新发展跨入新的历史阶段,专利申请总量突破百万件,专利申请趋势仍在快速增长,技术人才规模不断扩大,产业融合广泛深入,应当在底层关键技术突破、建设知识产权生态、大中小企业共同完善专利布局、开辟更广泛应用场景等方面发力,实现创新链与产业链的协同发展。
关于恒星的这个经典理论 中国天文学家最新研究提出了挑战******
中新网北京1月19日电 (记者 孙自法)广袤宇宙的千亿星系中无时无刻不在诞生着新的恒星,同一恒星形成区会批量形成许多不同质量的新生恒星。长期以来,“恒星初始质量分布规律不变”一直是天文界关于恒星演化研究的一个经典理论。
这一恒星经典理论绝对正确吗?恒星初始质量分布规律真的一成不变吗?中国科学院(中科院)国家天文台刘超研究员领导的合作团队最新研究发现,“恒星初始质量分布规律”会随着恒星金属元素含量和年龄发生显著变化,对其“不变”的经典理论提出挑战。
中国天文学家完成的这项刷新人类认知、将对天体物理多个领域研究产生深远影响的重大科研成果论文,北京时间1月19日凌晨在国际著名学术期刊《自然》发表。论文通讯作者刘超形象科普称,这也就是说,宇宙不同的地方必须用不同的“尺子”丈量,才能得到正确的测量结果。
终结恒星初始质量分布规律是否变化争议
中科院国家天文台介绍说,该台联合北京师范大学天文和天体物理前沿科学研究所、南京大学、中科院紫金山天文台等研究人员,发挥国家重大科技基础设施郭守敬望远镜(大天区面积多目标光纤光谱天文望远镜,LAMOST)光谱数据超大样本优势,并结合欧洲空间局盖亚(Gaia)卫星数据,研究发现天体物理学中一个非常重要的基础概念——“恒星初始质量分布规律”会随着恒星金属元素含量和年龄发生显著变化,从而对“恒星初始质量分布规律不变”的经典理论提出挑战,并刷新了人类对这一基本概念的认知。
研究团队在本次研究中发现,他们首次清晰观测到年轻的小质量恒星数量比例明显高于年老的恒星。此外,金属含量越高的恒星家族中小质量恒星数量比例也越多。这是天文学家首次如此清晰地观测到恒星初始质量分布规律随着恒星金属元素含量和年龄发生了显著变化,直接导致恒星初始质量分布规律在宇宙中普适不变的基本假设不再成立,也终结了一直以来天文界关于恒星初始质量分布规律是否变化的争议。
恒星初始质量函数领域国际权威、德国波恩大学教授帕弗尔·库鲁帕(Pavel Kroupa)评价认为,这项研究基于大样本观测获取的高质量数据,揭示了银河系中恒星初始质量函数与银河系演化历史和环境相关,对于深入理解银河系中不同环境不同时间恒星形成的性质非常重要。
图中横坐标显示恒星星族的金属元素含量(金属丰度),数值越大金属丰度越高。纵坐标显示恒星初始质量函数的形状,α数值越大表示质量较小的恒星比例越高。红色圆点显示年老星族α值比较小,即质量较小恒星的比例低;蓝色三角形显示较年轻恒星随着金属丰度变高,α值也增加,即质量较小恒星的比例增加。中科院国家天文台 供图9万多精细样本直接获取恒星初始质量函数
论文第一作者、中科院国家天文台博士研究生李佳东解释说,恒星初始质量分布规律,天文学上通常称为恒星初始质量函数,它描述了一群恒星在刚刚诞生时,不同质量的恒星所占的比例。在整个天体物理研究中,恒星初始质量函数是现代天文学中一个非常基础的物理概念,对许多关键天体物理学问题的研究起到至关重要的作用。
半个多世纪以来,天文学家通常认为恒星初始质量函数在宇宙各处及各个演化阶段是普适不变的,并作为基本假设在星系形成与演化、星团结构和演化、双星演化,甚至太阳系外行星以及引力波等诸多天体物理研究领域广泛应用,几乎成为天体物理教科书中的“经典假设”。
不过,天文学家近年来通过各种新的观测,发现恒星初始质量函数很有可能不是普适不变的。论文合作者、南京大学天文系教授张智昱指出,一些迹象显示,在恒星形成活跃的环境中大质量恒星的比例更高,这意味着恒星初始质量函数可能不是普适的。
恒星初始质量函数在宇宙各处是否变化成为困扰天文学家的重要问题,需要在银河系中找到更为直接有力的观测证据。近年来,随着郭守敬望远镜、盖亚卫星等中外大型天文设施投入观测运行,并获得海量观测数据,助力中国天文学家发现恒星初始质量函数变化的直接证据。
研究团队发挥郭守敬望远镜大样本光谱数据优势,筛选出迄今最精细的9万多颗太阳邻域的恒星样本,并获取了每颗恒星的金属元素含量和质量。结合盖亚卫星观测数据,他们首次通过俗称“数星星”这一最直观的恒星计数法,对具有不同金属元素含量和年龄的恒星进行统计,从观测角度直接获取了几乎不依赖于任何模型的恒星初始质量函数。
宇宙不同地方需要合适“尺子”正确测量
研究团队认为,无论是测量宇宙不同阶段星系中暗物质和重子物质质量、构建星系化学演化,还是理解恒星形成过程、分析双星演化的物理机制、探测太阳系外行星,甚至包括研究恒星级引力波事件等一系列天体物理学前沿问题的研究,都将因恒星初始质量函数的变化而受到挑战。
刘超以“尺子”作比喻指出:“这如同是一把会随着环境变化的‘尺子’,不能用同一把‘尺子’丈量宇宙的不同地方。在宇宙不同地方,天文学家需要更换合适的‘尺子’,才能得到正确的测量结果。例如,使用银河系目前的‘尺子’就无法测量早期的宇宙”。
论文合作者、中科院紫金山天文台符晓婷副研究员补充说,如此复杂变化的恒星初始质量函数,对恒星形成理论也提出了严峻的挑战。
中科院国家天文台表示,这一原创性成果是中国天文大科学装置郭守敬望远镜在前沿基础研究领域取得的又一项突破性进展。未来,中国将发射中国空间站工程巡天望远镜(CSST),将助力天文学家在银河系更深远区域及近邻星系中进一步验证该重大发现,为更深入理解恒星初始质量函数和恒星形成的物理过程,提供更加丰富的天文观测数据。(完)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |